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Abstract

Pei formalism has been designed to reason and develop parallel pro-
grams in the context of data parallelism. In this paper, we focus on the
use of Pei to transform a program involving dense matrices into a new
program involving sparse matrices, using the example of the matrix-vector
product.
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1 Introduction

A wide range of research work on the static analysis of programs forms
the foundation of parallelization techniques which improve the efficiency of
codes: loop nest rewriting, directives to the compiler to distribute data or
operations, etc. These techniques are based on geometric transformations
either of the iteration space or of the index domains of arrays.

This geometric approach entails an abstract manipulation of array
indices to define and transform the data dependences in the program.
This requires the ability to express, compute and modify the placement
of the data and operations in an abstract discrete reference domain. The
programming activity may then refer to a very small set of primitive issues
to construct, transform, or compile programs. Pei is a program notation
and includes such issues.

In this paper we focus on the way Pei deals with sparse computations.
For any matrix operation defined by a program, a sparse computation is a
transformed code which adapts computations efficiently in order to respect
an optimal storage of sparse matrices [2]. Such a storage differs from the
natural memory access, since the location of any non-zero element of the
matrix has to be determined. Due to the reference geometrical domain
in Pei, we show how a dense program can be transformed to meet some
optimal memory storage.
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2 Definition of the Formalism PEI

2.1 An Introduction to Pei Programming

The theory Pei was defined [13, 14] in order to provide a mathematical
notation to describe and reason on programs and their implementation.
A program can be specified as a relation between some multisets of value
items, or, roughly speaking, its inputs and outputs. Of course, program-
ming may imply putting these items in a convenient organized directory,
depending on the problem terms. In scientific computations, for example,
items such as arrays are functions on indices. The index set, that is, the
reference domain, is a part of some Zn. In Pei such a multiset of value
items mapped on a discrete reference domain is called a data field.

For example, the multiset of integral items {1,−2, 3, 1} can be ex-
pressed as a data field, say A, each element of which is recognized by an
index in Z (e.g., from 0 to 3). Of course, this multiset may be expressed
as another data field, say M, which places the items on points (i, j) ∈ Z2

such that 0 ≤ i, j < 2. These two data fields A and M are considered
equivalent in Pei, since they express the same multiset. More formally,
there exists a bijection from the first arrangement onto the second one,
e.g. σ(i) = (i mod 2, i div 2). We note this by the equation:

M = align::A (1)

illustrated by Fig.#1 where

align = λi | (0 ≤ i ≤ 3) . (i mod 2, i div 2) (2)

Figure 1: Example of change of basis

Any Pei program is composed of such unoriented equations, as shown
in the following example of the matrix-vector multiplication.

2.1.1 Example of Matrix-Vector Multiplication

For any i in [1..n], compute xi =
∑j=n
j=1 ai,j × vj .

Any xi can be defined by a recurrence on the domain {j | 1 ≤ j ≤ n}
of Z by:

si,1 = ai,1 × v1 (a)
si,j = si,j−1 + (ai,j × vj) 1 < j ≤ n (b)
xi = si,n (c)

where the si,j are intermediate results. The recurrence equation (b) em-
phasizes uniform dependencies (0, 1) for the calculation of si,j .
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In Pei, this definition can be expressed in the following way: matrix
A is expressed as a data field A mapped on the domain {(i, j) | 1≤i, j≤n}.
Vectors v and x are expressed as data fields V and X mapped on {i |
1≤i≤n}. This means that for any i, the values vi and xi are located at
point i. The resulting Pei program is shown in Fig.#2. Of course, any
program which lies on another mapping for A, V or X defines an equivalent
program, provided its operations result in an equivalent data field. The
recurrence defining the variable s suggests mapping the data field S in Z2.
Since the vj are used by the si,j , for any i, the values of V are also mapped
in Z2, by a kind of data strip-mining on data field B. Its values are then
broadcast to localize the right values onto the right locations in order to
compute the recurrence steps.

MatVec: (A,V) 7→ X
matrix::A = A
align::B = V
P = prod B (A/&/(B C spread))
S = add B (P/&/(S C shift))
X = project::(S C last)
matrix = λ(i, j) |(1≤i≤n, 1≤j≤n) . (i, j)
align = λ(i, j) |(i=1, 1≤j≤n) . j
project = λ(i, j) |(1≤i≤n, j=n) . i
shift = λ(i, j) |(1≤i≤n, 1<j≤n) . (i, j−1)
last = λ(i, j) |(1≤i≤n, j=n) . (i, j)
spread = λ(i, j) |(1≤i≤n, 1≤j≤n) . (1, j)
add = id # λ(a·b) . a+b
prod = λ(a·b) . a×b

Figure 2: Matrix-vector multiplication in Pei

For the sake of simplicity, this intuitive explanation referred to the data
parallel programming issues. Nevertheless, this imperative presentation
must not confuse the reader: Pei is a declarative language which expresses
equations on data fields. Therefore, the following is a more complete
comment on every equations of Fig.#2:

• The first equation defines the mapping of the input data field A.
Function matrix, defined on Z2, applies a change of basis (notation
::), which is the identity on the domain [1..n]× [1..n]. It means that
the values are placed onto a square [1..n]× [1..n].

• The second equation implicitly defines B. The function align, de-
fined on Z2, applies a change of basis, which expresses that the pro-
jection of its argument B, supposed to be a row, on a one-dimensional
domain, is equal to V. Therefore, V is aligned on a two-dimensional
domain. Notice that functions such as align define the context of
the program. They are expressed as λ-expressions, in which the
separator “|” allows the definition of the function domain, and “.”
begins the function body.
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• In the third equation, the operation /&/ builds the pairs of value
items of A and (B C spread), which are placed at the same location.
The last expression applies a geometrical operation (notation C),
which broadcasts the values of the “first row” of data field B in the
direction (1, 0) in Z2.

• The data field S results from the application of a so-called functional
operation (notation B) on two data fields. The first one results from
a geometrical operation on S which expresses the dependency (0, 1)
in Z2. Note that S also collects the partial sums computed during
the reduction.

• The last equation defines the data field X, by a change of basis. It
projects the part of S mapped on {(i, n) |1≤i≤n} onto Z. Therefore,
the result X is one-dimensional.

Figure 3 represents the geometrical operations detailed above.

Figure 3: Matrix-vector multiplication in Pei.

2.1.2 Translation into HPF

The previous program can be translated into HPF [7], thanks to a Pei-to-
HPF translator developed at ICPS. More information on this tool design
can be found in [6]. At first, the program is transformed into a translatable
one. For instance, new data fields can be added to allow the translation.
As far as we are concerned, the computation of data field P requires such
transformation. The equation

P = add B (A/&/(B C spread)) (3)
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has to be split into

D = B C spread (4)

P = add B (A/&/D). (5)

A type-checker verifies that there are no contradictory definitions in the
program and returns the domain of each data field, allowing the declara-
tion of variables. Each equation can then be translated. Applications of
change of basis are translated into align directives after a template with
which all variables can be aligned is computed, followed by initializations
of variables according to the change of basis. Functional operations are
translated using forall statements, as well as geometrical operations.
Translation of recurrent equations results in a phase of initialization for
the variable that will collect the result, followed by the computation of
the recurrent equation. The resulting HPF code for the Pei program of
Fig.#2 is shown on Fig.#4.

program MatVec
real A(1:n,1:n), V(1:n), B(1:n,1:n)
real D(1:n,1:n), P(1:n,1:n), S(1:n,1:n)
real X(1:n)+

!hpf$ template T(1:n,1:n)
!hpf$ align A,B,P,S with T
!hpf$ align V(j) with T(1,j)
!hpf$ align X(i) with T(i,n)

forall (j=1:n) B(0,j)=V(j)
forall (i=1,n, j=1:n) D(i,j)=B(1,j)
forall (i=1:n, j=1:n) P(i,j)=A(i,j)*D(i,j)
forall (i=1:n) S(i,1)=0
forall (i=1:n)
do j=1,n S(i,j)=S(i,j-1)+P(i,j)

endforall
forall (j=1:n) X(j)=S(j,n)

Figure 4: Translation of the Pei matrix-vector multiplication program into HPF

2.2 Syntactic Issues

The previous example allows shows that data fields are main features
in Pei. Besides data fields, partial functions define operations on these
objects. In the following, A, B, X, etc. denote data fields, whereas f, g, etc.
denote functions. The Pei notation for partial functions is derived from
the lambda-calculus. Any function f of domain dom(f) = {x | P (x)} is
denoted as λx |P (x) .f(x). Moreover a function f defined on disjunctive
sub-domains is denoted as a partition f1 # f2 of functions.

Expressions are defined by applying operations on data fields. Pei

defines one internal operation on the data field set, called superimposition.
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It is denoted as /&/and builds the sequences of values of its arguments1.
Three external operations are defined and associate a data field with a
function:

• The functional operation, denoted as B, applies a function f (which
may be a partial function) on value items of a data field X (notation
f B X).

• The change of basis (denoted as ::). Let h be a bijection, h::X

defines a data field that maps the value items of X onto another
discrete reference domain.

• The geometrical operation, denoted as C, moves the value items of a
data field on its domain. The data field X C g is such that the item
mapped on some index z, z ∈ dom(g), “comes from” X at index g(z).

2.3 Semantics and Program Transformations

The semantics of Pei are founded on the notion of discrete domain asso-
ciated with a multiset. We call drawing of a multiset M of values in V a
partial function v from some Zn in V , whose image is M .

Such a drawing should define a natural functional interpretation [[X]] =
v of a data field X. As we have said it at the beginning of this section,
any other drawing can be deduced by applying any bijection, say h. As
soon as its domain dom(h) contains dom(v), its interpretation should also
be equal to v ◦ h−1. This is not sound, and we have to indeed consider a
data field X as the abstraction of any drawing of a given multiset. A data
field X is a pair (v : σ), composed of a drawing v of a multiset M and of
a bijection σ such that dom(v) ⊂ dom(σ).

This definition induces a sound interpretation of a data field X = (v : σ)
as the function [[X]] = v ◦ σ−1. It founds the semantics of operations on
data fields.

The semantics allow the definition of program transformations in Pei

as soon as a data field is substituted for any equivalent one in an ex-
pression, or by applying some algebraic law on the operations. A few
examples of such laws (a detailed list is given in [15]), assuming right and
left expressions are valid expressions, include:

f1 B (f2 B X) = (f1 ◦ f2) B X (6)

X C (g1 ◦ g2) = (X C g1) C g2 (7)

(X1/&/X2) C g = (X1 C g)/&/(X2 C g) (8)

h::(X1/&/X2) = (h::X1)/&/(h::X2) (9)

h::(f B X) = f B (h::X) (10)

h::(X C g) = (h::X) C h ◦ g ◦ h−1 (11)

1We use two operators on sequences: an associative constructor denoted as “·” and the
function “id” which is the identity on sequences of one element.
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3 PEI and Sparse Computations

3.1 Introduction to Sparse Computation

Sparse computations occur in linear algebra when dealing with sparse ma-
trices. A matrix is said to be sparse when it has a certain amount of zero
entries. Such matrices arise in the resolution of partial differential equa-
tions using finite elements for example. They require special handling, as
only the non-zero entries have to be stored, saving both space-storage and
computational time (no computation is done with the zero elements).

There are several sparse storages available, some of which are described
in [1]. The most simple is coordinate storage. It requires three arrays: one
for the non-zero entries, another for the corresponding row indices, and
the third one for the corresponding column indices. The FORTRAN code
for matrix-vector multiplication v = Ab is given in Fig.#5, each array
being respectively a, ia, ja, and nnz being the total number of non-zero
elements. Another popular storage [12] is CSR or compress sparse row.

do i=1, nnz
v[ia[i]] = v[ia[i]]+b[ja[j]]*a[i]

enddo

Figure 5: Matrix-vector multiplication using Coordinate Storage

It also requires three arrays: one for non-zero entries, stored row-wise;
one for the corresponding column indices; and one as a pointer on the
beginning of each new row in the previous arrays, separating the rows from
each other. The same storage can be used in a column-wise storage, the
non-zero values being stored column-wise and the pointer array pointing to
the beginning of each column. The storage is then compress sparse column.
Figure 6 shows the FORTRAN code for the matrix-vector multiplication
v = Ab using CSR, assuming that the values are stored in a, the column
indices in ja and the row pointers in ia.

do i=1,n
do j=ia[i],ia[i+1]-1
v[i] = v[i]+b[ja[j]]*a[j]

enddo
enddo

Figure 6: Matrix-vector multiplication using CSR storage

Such programs are hard to analyze due to indirections such as b[ja[i]],
or those appearing in the loop bounds (compare to dense code shown in
Fig.#7). They are also hard to write, each storage leading to a different
code. Their parallelization is also a problem, because data-accesses are
irregular, making data dependences and potential parallelism difficult to
find.
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do i=1,n
do j=1,n
v[i] = v[i]+b[j]*a[j]

enddo
enddo

Figure 7: Dense matrix-vector multiplication

A solution to the problem can be to write sparse code from dense code,
but in an “automatic” way. We intend to use Pei as a formal framework
to apply transformations to a dense program in order to get an equivalent
sparse program.

3.2 Pei Approach

Pei can deal with sparse computations by adapting a code in order to
respect an optimal storage of sparse data structures. Such a storage differs
from the natural memory access since the location of any non-zero element
of the matrix has to be determined. In terms of Pei features, this means
that the optimal storage and the dense array are two equivalent data
fields. The change of basis from one data field onto the other one defines
the way the sparse matrix is stored. Therefore, transforming the code
consists in applying this change of basis to the dense program.

Let us consider again the example of a matrix-vector product, assum-
ing the matrix is composed of a few bands parallel to the diagonal (see
Fig.#8, where non-zero elements are located at indices such that either
i = j + 2, or i = j, or i = j − 2).

First, a sparse storage has to be chosen so that the dense program can
be transformed. In this example, a modified version of CSR called MSR
(modified sparse row) has been chosen. This storage consists of two arrays,
A and JA, the main diagonal being stored apart at the beginning of A.
The rest of the matrix is stored using CSR (or CSC, for MSC), except
that IA is replaced by the first positions of JA (those corresponding to
the diagonal elements in A, as shown in Fig.#8).

Figure 8: Sparse matrix in dense representation and MSR storage
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3.3 Program Transformation in Pei

The non-zero value items of the matrix and the vector value items must
belong to the domain of the change of basis to be applied in Pei. There-
fore, the vector can no longer be aligned with the first row (that may
be sparse); otherwise, dropping the zero values with the change of basis
would suppress some vector values. That is why a first transformation
step consists, for example, of aligning the vector with the main diago-
nal. MSR storage is then well-adapted. This alignment can be defined by
rewriting spread as (see Fig.#9):

spread = pivot ◦ diagonal (12)

where

pivot = λ(i, j) |(1≤i≤n, j=i) . (1, j) (13)

diagonal = λ(i, j) |(1≤i≤n, 1≤j≤n) . (j, j). (14)

Figure 9: Geometrical functions spread, pivot and diagonal

We obtain the new program in Pei:

{
matrix :: A = A

align :: B = V

P = prod B ( A /&/( (B C pivot) C diagonal ) )
...

}

The change of basis itself (Fig.#8) is defined by the following function:

gather = λ(i, j) |(1≤i≤2, j=i+2) . (n+i+1)

# λ(i, j) |(3≤i≤n−2, j=i+2) . (n+2i−1)

# λ(i, j) |(1≤i≤n, j=i) . (i)
# λ(i, j) |(3≤i≤n−2, j=i−2) . (n+2i−2)

# λ(i, j) |(n−1≤i≤n, j=i−2) . .(2n+i−3). (15)
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Its inverse is

gather
−1 = λ(i) |(1≤i≤n) . (i, i))

# λ(i) |(n+2≤i≤n+3) . (i−n−1, i−n+1)

# λ(i) |(n+4≤i≤3n−5), (i−n)mod2=0) .

((i−n−1)/2 + 2), (i−n−1)/2)

# λ(i) |(n+4≤i≤3n−5), (i−n)mod2=1) .

((i−n−1)/2+1), (i−n−1)/2+3)

# λ(i) |(3n−4≤i≤3n−3) . (i−2n+3, i−2n+1). (16)

Applying the change of basis to P leads to this definition, using rule (10)
previously given in section 2.3:

gather::P = prod B (gather::A /&/

gather::((B C pivot) C diagonal)). (17)

We finally obtain, applying rule (11) to gather::((B C pivot) C diagonal):

P = prod B (gather::A /&/

(gather::(B C pivot)) C (gather ◦ diagonal ◦ gather−1).(18)

Let

P’ = gather::P (19)

A’ = gather::A (20)

T’ = gather::(B C pivot). (21)

We can write:

P’ = prod B (A’/&/(T’ C spread’)) (22)

where the new function spread’, illustrated in Fig.#10, is defined below.

spread’ = gather ◦ diagonal ◦ gather−1

= λ(i) |(1≤i≤n) . (i)

# λ(i) |(n+2≤i≤n+3) . (i−n+1)

# λ(i) |(n+4≤i≤3n−5, (i−n)mod2 = 0) . ((i−n−1)/2)

# λ(i) |(n+4≤i≤3n−5, (i−n)mod2 = 1) . ((i−n−1)/2 + 3)

# λ(i) |(3n−4≤i≤3n−3) . (i−2n+1) (23)

In order to apply the change of basis gather in the equation defining
S, the data field definition is constrained on the domain of gather by ge-
ometrical operation sparse that describes the matrix non-zero structure:

sparse = λ(i, j) |(3≤i≤n, j=i−2)

# λ(i, j) |(1≤i≤n, j=i)
# λ(i, j) |(1≤i≤n−2, j=i+2) (24)
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Figure 10: New geometrical functions align and spread’

When we apply sparse to S, we get

S C sparse = add B (P C sparse /&/

(S C shift ◦ shift) C sparse)

= add B (P C sparse /&/S C (shift ◦ shift ◦ sparse))

= add B (P C sparse /&/

S C (sparse ◦ shift ◦ shift ◦ sparse))

= add B (P C sparse /&/(S C sparse) C sparse shift)(25)

where, in this particular case,

sparse shift = shift ◦ shift ◦ sparse
= λ(i, j) |(3≤i≤n, j=i) . (i, j−2)

# λ(i, j) |(1≤i≤n−2, j=i+2) . (i, j−2). (26)

We have now to apply gather to the summation. Let

S1 = S C sparse. (27)

We can write, using rule (10) followed by rule (11) :

gather::S1 = addB (gather::(P C sparse) /&/

gather::(S1 C sparse shift))

= addB (gather::(P C sparse) /&/

(gather::S1) C gather ◦ sparse shift ◦ gather−1).(28)

Note that since gather only applies to the non-zero elements, we have

P’ = gather::(P C sparse). (29)

Let

S’ = gather::S1. (30)

We finally get

S’ = add B (P’/&/(S’ C shift’)) (31)
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where the new geometrical operation shift’ illustrated in Fig.#11 is de-
fined by

shift’ = gather ◦ sparse shift ◦ gather−1

= λ(i) |(n+2≤i≤n+3) . (i−n−1)

# λ(i) |(n+4≤i≤3n−5, (i−n)mod2=1) . ((i−n−1)/2+1)

# λ(i) |(3≤i≤n−2) . (n+2i−2)

# λ(i) |(n−1≤i≤n) . (2n+i−3). (32)

Figure 11: New geometrical function shift

We finally have to find the result of the matrix-vector multiplication.
The equation defining X in Fig.#2 has to be split, so that the transfor-
mation of Z = S C last is computed first. After that, the new solution
X’ can be found. The dense data field S has to be constrained to the
sparse domain, so that S C last becomes (S C sparse) C sparse last,
which can be simplified into S1 C sparse last where S1 was defined in
(27) and

sparse last = λ(i, j) |(1≤i≤n−2, j=i+2)

# λ(i, j) |(n−1≤i≤n, j=i). (33)

Then we can apply the change of basis leading to

gather::Z = gather::(S1 C sparse last)

= S’ C (gather ◦ sparse last ◦ gather−1) (34)

where S’ was defined in (30). With

Z’ = gather::Z (35)

and

last’ = gather ◦ sparse last ◦ gather−1

= λ(i) |(n+1≤i≤n+2).(i)

# λ(i) |(n+3≤i≤3n−5, (i−n)mod2 = 1).(i)

# λ(i) |(n−1≤i≤n).(i) (36)

we have the equation illustrated in Fig.#12 and displayed below:

Z’ = S’ C last’. (37)
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Figure 12: New geometrical function last’

The solution vector can be aligned with the matrix diagonal by apply-
ing
project’ to Z’, where

project’ = λ(i) |(1≤i≤2).(i+n)

# λ(i) |(2≤i≤n−2).(2i+ n− 1)

# λ(i) |(n−1≤i≤n).(i), (38)

leading to

X’ = project’::Z’. (39)

Finally, Eqs.#(37) and (39) can be merged to provide

X’ = project’::(S’ C last’). (40)

This completes the program transformations in Pei, and defines a sparse
solution. The final sparse program is written in Fig.#13, where sparsematrix =
gather◦matrix and align’ = gather◦pivot◦align. Functions spread’,
shift’, and last’ are described in Eqs.#(23), (32), and (36).

SparseMatVec: (A,V) 7→ Z
{
sparsematrix::A = A
align’::B = V
P = prod B (A/&/(B C spread’))
S = add B (P/&/(S C shift’))
X = project’::(S C last’)
}

Figure 13: Sparse matrix-vector multiplication with Pei

Notice that Pei expressions are linked to the definition of the arrays
in MSR storage. For example, let second = λ(i, j).(j). We clearly have

JA(i) = second ◦ gather−1(i) for i > n+ 1. (41)

However, Pei does not require implementing the first n + 1 elements
of JA because references to rows are useless since the vector is explicitly
aligned with the computation points by the change of basis. References
to rows are thus hidden in the function gather.
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3.4 Other Storages

The previous example showed the transformation of a dense matrix vector
multiplication into a sparse code where the matrix is stored using MSR
storage. However, other storages can be described, including, for instance,
coordinate storage. Let us consider the following matrix A and its storage:

A =


1 0 2 0 0
0 3 0 4 0
5 0 6 0 7
0 8 0 9 0
0 0 10 0 11

 . (42)

A can be stored as

a = 1 4 6 7 3 9 2 5 8 10 11

ia = 1 2 3 3 2 4 1 3 4 5 5

ja = 1 4 3 5 2 4 3 1 2 3 5 .

The change of basis corresponding to this storage is given by :

gather2 = λ(i, j) |(i = 1, j = 1) . (1)

# λ(i, j) |(i = 1, j = 3) . (7)

# λ(i, j) |(i = 2, j = 2) . (5)

# λ(i, j) |(i = 2, j = 4) . (2)

# λ(i, j) |(i = 3, j = 1) . (8)

# λ(i, j) |(i = 3, j = 3) . (3)

# λ(i, j) |(i = 3, j = 5) . (4)

# λ(i, j) |(i = 4, j = 2) . (9)

# λ(i, j) |(i = 4, j = 4) . (6)

# λ(i, j) |(i = 5, j = 3) . (10)

# λ(i, j) |(i = 5, j = 5) . (11). (43)

It is a point-to-point function, but it can still be applied to the whole
program. The vector cannot be aligned with the first row, as it is sparse,
but we can still align it with the diagonal, and produce a new Pei program,
following the same steps as in previous section.

3.5 HPF Translation

Just as for the dense program, we would like to have a translation of the
Pei program into HPF. However, the translator design is not advanced
enough. First of all, the typechecker does not yet deal with functions
defined on domain partitions, as it is the case for the functions involved
in the sparse program. There is another difficulty in the translation of
the reduction. A space-time mapping has to be specified so that there is
an order in the sum computation. But our domain is one-dimensional,
and time is not a dimension of the geometrical domain, whereas vector
(0, 1) could be seen as a time direction in the dense program. As we
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are not able to provide a time direction, the translator cannot translate.
At last, another difficulty is that the translator does not handle HPF2
statements for irregular distribution of data. In the case of coordinate
storage, alignment cannot be expressed.

However, Fig.#14 shows the code as it could be generated for the
program of Fig.#13 if all the previous problems were tackled.

The use of if statements implies overhead in the program execution.
If no regular pattern could be found in the matrix, there would be much
more if than in Fig.#14, for in this case functions spread’, shift’, ...
would be point-to-point functions. One way to handle this would be to use
indirections arrays computed by the translator instead of if statements,
generating automatically sparse code with any storages.

4 Other Approaches

The idea of obtaining sparse code by analyzing or transforming dense code
has already been developed. For instance, Bik and Wijshof’s apprroach
[2, 3, 4] is to build a sparse compiler that takes a dense program and com-
piles it, taking into account the fact that some data are sparse. The sparse
data-structure is chosen according to the program. An analysis is done,
where the computations involving sparse data structures are detected. If

statements are inserted to separate the parts involving non-zero elements
from the ones only using zero elements, which can sometimes be elimi-
nated. The set of indices referring to the non-zero values of A is denoted
E(A), and the function representing the mapping of these values onto the
sparse data structure A′ is denoted as σ. The following example shows
the kind of transformation:

x = A(i,j) becomes

if (i,j) ∈ E(A)
x =A′(σ(i,j))

else

x = 0.

The introduced function σ can be viewed as a change of basis in Pei,
but the user does not choose it in the case of the sparse compiler. The
chosen sparse storage depends both on the structure of the matrix (pro-
vided by the user or analyzed, the matrix being read from a file) and on
the accesses of these non-zero elements during computations. But only
storages where an access direction is available (such as CSR) are allowed,
and loops in the original program are replaced by loops whose indices re-
fer to the sparse storage. Unlike Pei, those transformations are not done
through functions composition, but by computing indirection arrays that
in some way represent σ−1. The idea of representing the change of ba-
sis with an array would be a good idea in the code generation phase (as
suggested in section 3.5), but this is not the goal of Pei itself, as it is a
formal framework working on functions that transform the dense code in
a sparse formulation thus proven to be correct.

The approach of Bik and Wijshoff does not clearly solve the paral-
lelization problem. The sparse storage choice should take parallelism into
account so that contiguous data still remain contiguous in the case of
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program SparseMatVec
real A(1:3*n-4), V(1:n), B(1:3*n-4)
real D(1:3*n-4), P(1:3*n-4), S(1:3*n-4), Z(1:3*n-4)

!hpf$ template W(1:3*n-4)
!hpf$ align A,B,P,S,Z with T
!hpf$ align V(1:n) with T(1:n)

forall (i=1:n) T(i)=V(i)
forall (i=1:3*n-4)
if (1.lt.i .and. i.lt.n) D(i)=T(i)
if (n+2.lt.i .and. i.lt.n+3) D(i)=T(i-n+1)
if (n+4.lt.i .and. i.lt.3*n-5) then

if (mod((i-n),2).eq.0) then
D(i)=T((i-n-1)/2)

else
D(i)=T((i-n-1)/2 +3)

endif
if (3*n-4.lt.i .and. i.lt.3n-3) D(i)=T(i-2*n+1)

endforall
!

forall (i=1:3*n-4) P(i)=A(i)*D(i)
!

forall (i=1:3*n-4)
if (1.lt.i .and. 2.lt.i) S(i)=P(i)
if (i.eq n+1) S(i)=P(i)
if (n+4.lt.i .and i.lt.3*n-5) then
if (mod(i,2) .eq. 0) S(i)=P(i)

endif
if (i.eq.3*n-4) then S(i)=P(i)

endforall
forall (i=3:n+3)
if (3.lt.i .and. i.lt.n-2) S(i)=S(i)+S(n+2*i-2)
if (n-1.lt.i .and. i.lt.n) S(i)=P(i)+S(2*n+i-3)
if (n+2.lt.i .and. i.lt.n+3) S(i)=P(i)+S(i-n-1)

endforall
forall (i=n+4:3*n-5)
if (mod(i,2) .eq. 1) S(i)=P(i)+S((i-n-1)/2+1)

endforall
forall (i=1,n)
if (1.lt.i .and. i.lt.2) X(i)=S(i-n)
if (3.lt.i .and. i.lt.n-2) X(i)=S(2*i+n-1)
if (n-1.lt.i .and. i.lt.n) X(i)=S(i)
endforall

Figure 14:
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parallelism. However, they suggest that the sparse compiler could insert
directives for a parallel compiler so that parallelism easyly found in the
dense code still remains clear in the sparse code. As Pei is designed to
representing program in a data parallel context, each point in the domain
being a virtual processor, parallelization in this case is easily achieved.

Another approach is to compare sparse data to relational queries. This
is the approach of Kotlyar, Pingali and Stodghill [8, 9]. Data accesses in
loop nests consist of enumerations of tuples satisfying a given relational
query. In the case of matrix-vector multiplication as in Fig.#7, the matrix
A can be viewed as a database relation of tuples 〈i, j, a〉, i and j being
rows and columns indices, a being values. The same remark applies to V
with 〈j, v〉. Finally, the iteration space 1 ≤ i ≤ n, 1 ≤ j ≤ n is a relation
R of 〈i, j〉 tuples. Selecting the set of data for an iteration consists of
selecting the non-zero values a and v of A and V for i and j respecting R.

The main problem relies on the efficient evaluation of the queries,
that is discovering joins to avoid cross-products, but this problem can be
overcome. In contrast to the previous work, most of the sparse storage
structure is hidden from the compiler. Only access methods are available,
hiding the storage implementation. This allows the programmer to choose
his own storage methods, provided the access methods are available. The
parallelization is done through distributed query [10] in the SPMD pro-
gramming model, where all global data are partitioned among processors,
leading to a local sparse storage. This complicates the evaluation of the
relational queries which refer first to the global representation of data.
As Pei is a tool that relies on the data parallel programming model we
do not come across this peculiar difficulty, because the data only have
one representation. The parallelization is natural in our case. However,
both approaches are similar in the sense that a high-level framework (func-
tional approach or relational approach) is given that allows the expression
of both parallelism and sparsity.

Pei does not itself handle the problem of code generation. It allows to
transform the program so that the new formulation is proven equivalent
to the original one. Some of the difficulties tackled by both the alternative
approaches (such as efficient data accesses) are left to the HPF translator.

5 Conclusion

The presented technique shows the interest of using Pei for program trans-
formation to address sparse computations. The example considered here
is based on a tridiagonal matrix, which is a special case of sparse matrix.
Unfortunately, sparse matrices do not always have this special shape, and
the main difficulty is then to define the different functions used to write
the sparse program. It can be achieved by reading the matrices from a
Harwell-Boeing formatted file [5], for example.

Several types of storage can be expressed using Pei, among them
sparse general pattern [11], compress diagonal storage, jagged diagonal
storage or other types of storage described in [1], since a storage in Pei is
just a way to map data on a geometrical domain through the convenient
change of basis. In fact, the non-zero elements of the matrix can be stored
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in any chosen order; the vector alignment with the matrix is then done
through the application of the change of basis to the whole dense program.
It provides a theoretical framework in which the changes applied to the
dense program are proven to be correct by composition of functions using
formal calculus, independent from routines written in a given language.

Finally, Pei provides parallel code. Instead of scanning the sparse
data-structure to perform computation, we consider it parallel data, and
we perform parallel computation after proper data alignment has been
done. Therefore, Pei can be used in order to build a sparse computation
library in the data parallel programming model expressed, for example,
in HPF. The given example of sparse matrix vector could be used in the
parallelization of a conjugate gradient algorithm (see [1]), for instance.
However, the definition of the library requires the definition of a Pei to
HPF translator.
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